首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   582篇
  免费   17篇
  国内免费   2篇
化学   434篇
晶体学   2篇
力学   6篇
数学   28篇
物理学   131篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   10篇
  2018年   7篇
  2017年   7篇
  2016年   6篇
  2015年   10篇
  2014年   14篇
  2013年   35篇
  2012年   31篇
  2011年   31篇
  2010年   15篇
  2009年   22篇
  2008年   30篇
  2007年   34篇
  2006年   32篇
  2005年   45篇
  2004年   44篇
  2003年   35篇
  2002年   17篇
  2001年   7篇
  2000年   7篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   9篇
  1993年   8篇
  1992年   12篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1987年   6篇
  1985年   8篇
  1984年   6篇
  1982年   4篇
  1981年   7篇
  1980年   5篇
  1979年   6篇
  1978年   7篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   6篇
  1973年   7篇
  1971年   2篇
  1969年   3篇
  1967年   3篇
排序方式: 共有601条查询结果,搜索用时 250 毫秒
11.
The hydrogen bond arrangement in a complex of cellulose with ammonia has been studied using neutron crystallography in combination with molecular dynamics simulations. The O6 atom of the hydroxymethyl group is donor in a highly occupied hydrogen bond to an ammonia molecule. This rotating ammonia molecule is donor in partially occupied and transient hydrogen bonds to the O2, O3 and O6 atoms of the hydroxyl groups of other chains. The hydrogen atom bound to the O3 atom is disordered but it is almost always involved in some type of hydrogen bonding. It is donated in a hydrogen bond most of the time to the O5 atom on the same chain. However, it also rotates away from this O5 atom to be donated to an ammonia molecule part of the time. On the other hand the hydrogen atom bound to the O2 atom is free from hydrogen bonding most of the time. It is donated in a hydrogen bond to the O6 atom on a neighboring chain only with a relatively small probability. These results provide new insights into how hydrogen bonds are rearranged during the conversion of cellulose I to cellulose IIII by ammonia treatment.  相似文献   
12.
The direct oxidation of unprotected amino alcohols to their corresponding amino carbonyl compounds has often posed serious challenges in organic synthesis and has constrained chemists to adopting an indirect route, such as a protection/deprotection strategy, to attain their goal. Described herein is a highly chemoselective aerobic oxidation of unprotected amino alcohols to their amino carbonyl compounds in which 2‐azaadamantane N‐oxyl (AZADO)/copper catalysis is used. The catalytic system developed leads to the alcohol‐selective oxidation of various unprotected amino alcohols, carrying a primary, secondary, or tertiary amino group, in good to high yield at ambient temperature with exposure to air, thus offering flexibility in the synthesis of nitrogen‐containing compounds.  相似文献   
13.
The assembly of metal oxide nanoparticles (NPs) on a biomolecular template by a one-pot hydrothermal synthesis method is achieved for the first time. Magnetite (Fe3O4) nanoneedles (length: ~100 nm; width: ~10 nm) were assembled on cyclic-diphenylalanine (cFF) nanorods (length: 2–10 μm; width: 200 nm). The Fe3O4 nanoneedles and cFF nanorods were simultaneously synthesized from FeSO4 and l-phenylalanine by hydrothermal synthesis (220 °C and 22 MPa), respectively. The samples were analyzed by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. Experimental results indicate that Fe3O4 nanoneedles were assembled on cFF nanorods during the hydrothermal reaction. The composite contained 3.3 wt% Fe3O4 nanoneedles without any loss of the original magnetic properties of Fe3O4.  相似文献   
14.
We have performed molecular dynamics calculations using a revised version of the Gromos56Acarbo force field to understand the consequences of the different potential hydrogen bonding patterns on the structural stability and thermal behavior of the Iα and Iβ forms of native cellulose. For each allomorph, we considered three patterns of hydrogen bonds: two patterns obtained from neutron diffraction data refinement and a regular mixture of the two. Upon annealing, the hydrogen bonding schemes of cellulose Iβ, irrespective of the starting structure, re-arranged into the main hydrogen bond pattern experimentally observed (pattern A). On the other hand, the Iα structures, irrespective of the starting hydrogen bonding pattern, converged to a non-experimental structure where the adjacent chains are shifted along the chain direction by 0.12 nm in the hydrogen-bonded plane, and the hydroxymethyl group conformation alternates between gt and tg along the chain. The exotic structure in Iα might be a consequence of a deficiency in force field parameters and/or potential molecular arrangement in less crystalline cellulose.  相似文献   
15.
Morphological changes to the different components of lignocellulosic biomass were observed as they occurred during steam pretreatment by placing a pressure reaction cell in a neutron beam and collecting time-resolved neutron scattering data. Changes to cellulose morphology occurred mainly in the heating phase, whereas changes in lignin morphology occurred mainly in the holding and cooling phases. During the heating stage, water is irreversibly expelled from cellulose microfibrils as the elementary fibrils coalesce. During the holding phase lignin aggregates begin to appear and they increase in size most noticeably during the cooling phase. This experiment demonstrates the unique information that in situ small angle neutron scattering studies of pretreatment can provide. This approach could be useful in optimizing the heating, holding and cooling stages of pretreatments to allow the exact size and nature of lignin aggregates to be controlled in order to enhance enzyme accessibility to cellulose and therefore the efficiency of biomass conversion.  相似文献   
16.
A simple copper- and base-free palladium-catalyzed Sonogashira-type cross-coupling by the use of triarylantimony dicarboxylates is described. Reaction of triarylantimony diacetates with terminal alkynes in the presence of 1 mol % of PdCl2(PPh3)2 catalyst led to the formation of cross-coupling products in good to excellent yields. The reaction proceeded effectively under an aerobic condition, in that two of the three aryl groups on antimony could be transferred to the coupling products, whereas only one of them was involved in the reaction in an argon atmosphere. The reaction is sensitive to the electronic nature of the diacetates, and those bearing an electron-withdrawing group on the aromatic ring showed higher reactivity than those having an electron-donating group.  相似文献   
17.
Electronic conductivity of molecular wires is a critical fundamental issue in molecular electronics. π‐Conjugated redox molecular wires with the superior long‐range electron‐transport ability could be constructed on a gold surface through the stepwise ligand–metal coordination method. The βd value, indicating the degree of decrease in the electron‐transfer rate constant with distance along the molecular wire between the electrode and the redox active species at the terminal of the wire, were 0.008–0.07 Å?1 and 0.002–0.004 Å?1 for molecular wires of bis(terpyridine)iron and bis(terpyridine)cobalt complex oligomers, respectively. The influences on βd by the chemical structure of molecular wires and the terminal redox units, temperature, electric field, and electrolyte concentration were clarified. The results indicate that facile sequential electron hopping between neighboring metal–complex units within the wire is responsible for the high electron‐transport ability.  相似文献   
18.
X-ray crystallographic and cross-polarization/magic angle spinning 13C nuclear magnetic resonance techniques have been used to study an ethylenediamine (EDA)-cellulose I complex, a transient structure in the cellulose I to cellulose IIII conversion. The crystal structure (space group P2 1 ; a = 4.546 Å, b = 11.330 Å, c = 10.368 Å and γ = 94.017°) corresponds to a one-chain unit cell with one glucosyl residue in the asymmetric unit, a gt conformation for the hydroxymethyl group, and one EDA molecule per glucosyl residue. Unusually, there are no O–H···O hydrogen bonds between the cellulose chains; the chains are arranged in hydrophobic stacks, stabilized by hydrogen bonds to the amine groups of bridging EDA molecules. This new structure is an example of a complex in which the cellulose chains are isolated from each other, and provides a number of insights into the structural pathway followed during the conversion of cellulose I to cellulose IIII through EDA treatment.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号